BUS industry SAFETY council

Vehicle Technical Operations Committee

Winter Meeting 2019

Louisville, Kentucky

Vehicle Technical Operations Committee

- Welcome
- Thank You For Attending
- Post session survey. Please participate!

Thank you to our SME's!

Presented By:

Pat Meisenholder

Product Technical Manager, Michelin

Supporting Panel

Louis Hotard

Director of Technical Services, ABC Companies

Matthew Herr

Fleet Manager, Executive Coach Inc.

Tire Maintenance Best Practices

- Greenhouse Gas Efficiency Standards
- Tire Rolling Resistance
- Factors that Impact Rolling Resistance
- Fleet Strategies to Address New Requirements
- Open Discussion

49 CFR Parts 523, 534, 535

- Greenhouse Gas Emissions Standards & Fuel Efficiency Standards for Medium and Heavy-Duty Engines and Vehicles
- Phase 1: September 2011 (for MY 2014 My 2018)
- Phase 2: October 2016 (for MY 2018 My 2027)
- <u>Greenhouse gas Emission Model (GEM)</u>

Phase 1 GEM Model

- Vehicle simulation tool used by OEMS to demonstrate compliance
- Simulates 3 EPA drive cycles: 55 mph, 65 mph, and transient cycles
- Simple Model- 5 Inputs
 - 1. Coefficient of Aerodynamic Drag
 - 2. Steer & Drive Tire Rolling Resistance (kg/metric ton)
 - 3. Vehicle Speed Limiter (mph)
 - 4. Vehicle Weight Reduction (lbs)
 - 5. Extended Idle Reduction

Phase 1 Model

Phase 2 GEM Model

- "All Possible Technologies"
- "EPA Pre-Specified" categories eliminated; OEM must enter all values
- Added Idle Cycle to GEM model
- Expanded to provide additional guidance for light and medium duty vehicles, vocational vehicles. (Trailers and Glider Kits were included but are now pending).

Phase 2 GEM model inputs

GEM Output

- OEMs must measure and certify the CO₂ Standards, measured in grams of CO₂ per ton-mile.
- Two thresholds to meet: MY2021 and MY2027.

Custom Chassis Category	MY 2021	MY 2027	
Coach Bus	210	205	
Motor Home	228	226	
School Bus	291	271	
Other Bus*	300	286	
Refuse Truck	313	298	
Mixer	319	316	
Emergency	324	319	

OEM Reporting for vehicle standards

The following is the Greenhouse Gas Exhaust Emission Standards (STD) or Family Emission Limit(s) (FEL) in g/ton-mile as applicable under 17 CCR 95663:

	CO₂ (in g/ton-mile)			
GVWR	STD	Highest Projected FEL	Lowest Projected FEL	
GVWR > 33,000	222	220	209	

Rolling Resistance Requirements

Rolling Resistance

- 1. As tires turn, they flex and deform
- 2. Transform energy into heat.
- 3. Absorbs the friction when the tires contact the road.

= Rolling Resistance

What is Rolling Resistance?

- The energy dissipated by a Tire, per unit of distance travelled (rolling resistance force F_{RR}) and characterized by a coefficient (C_{RR})
- > Expressed in kg/T

Order of Magnitude:

Passenger Cars: 8 to 12 kg/T

Trucks: 4 to 8 kg/T

Tire Design Impacts Rolling Resistance

- 1. Rubber Compounding
- 2. Tire Architecture
- 3. Tread Pattern

What's in a Bus Tire?

Traditional Rubber Compounding

Carbon Black

- Discovered in 1915
- •30% of compound
- •Reinforces rubber compounds to significantly increase wear.

Silica Compounds: 1990s

- Industrialization Breakthrough
 - Improves resistance to tearing
 - Reduces rolling resistance
 - Improves grip on cold & wet surfaces.

"No Compromise"

Dual Compound Technology

- Co-extruded tread designs provide a cooler running base layer to protect casing.
- Tread cap provides high resistance to abrasion and better wear.

Architecture- Contributions to Rolling Resistance

Tread Pattern

External Factors that Impact Rolling Resistance

- 1. Tire Pressure
- 2. Tread Wear
- 3. Rolling Time
- 4. Ambient Temperatures
- 5. Road Surfaces
- 6. Speed

Tire Pressure

- An underinflated tire is over-deflecting and has a higher rolling resistance.
- 2. 8 psi underinflation increases rolling resistance by 12 %
- 3. 15 psi underinflation increases rolling resistance by 30%

- 1. Tire Pressure
- 2. Tread Wear
- 3. Rolling Time
- 4. Ambient Temperatures
- 5. Road Surfaces
- 6. Speed

Tread Wear

- 1. As tire wears, rolling resistance improves.
- 2. Expect 30 40% improvement from when the tire is new to fully worn (2/32").
- 3. Anticipate a drop in fuel economy when tires are replaced.

External Factors that Impact Rolling Resistance

- 1. Tire Pressure
- 2. Tread Wear
- 3. Rolling Time
- 4. Ambient Temperatures
- 5. Road Surfaces
- 6. Speed

Rolling Time

 For motor coach tires, approximately 60 – 90 minutes of use to "warm up".

A cold tire is 30% less efficient than a warm tire

Cool down= 3 hours.

Rolling Time: Thermal Equilibrium

- The heat generated within the tire is equal to the heat being dissipated.
- Normally considered to be "ambient + 60 degrees F", about 10 – 15 % higher than cold pressure.
- Maximum is 194 degrees F
- Operation above 230 degrees F impacts rubber properties.

External Factors that Impact Rolling Resistance

- 1. Tire Pressure
- 2. Tread Wear
- 3. Rolling Time
- 4. Ambient Temperatures
- 5. Road Surfaces
- 6. Speed

Ambient Temperatures

- 1. Tires operate more effectively when it is warm outside.
- 2. Optimal range- 60°F and 95°F
- 3. Rolling resistance improves 6% as temperature increases in 20 °F increments.

External Factors that Impact Rolling Resistance

- 1. Tire Pressure
- 2. Tread Wear
- 3. Rolling Time
- 4. Ambient Temperatures
- 5. Road Surfaces
- 6. Speed

Road Surfaces

- 1. Types of roads impact rolling resistance
 - Sand, Dirt, Asphalt, Concrete
- 2. Road surfaces have different levels of roughness (macro to smooth)
- 3. A rough road surface may increase rolling resistance over a smooth surface by 30%.

External Factors that Impact Rolling Resistance

- 1. Tire Pressure
- 2. Tread Wear
- 3. Rolling Time
- 4. Ambient Temperatures
- 5. Road Surfaces
- 6. Speed

Speed

- 1. Tires impact rolling resistance up to 55 mph.
- 2. As speed increases, tires become less of a factor.

Speed

Effect of Speed on Tire Fuel Efficiency

Phase 2 Tire Rolling Resistance Requirements

CO ₂ Emissions Standards for Certain Vocational Vehicles 1037.105(h) Alternative Compliance With Use Through 2026					
Vehicle	MY 2021 - 2026	MY 2027	ATIS or TPMS		
Regional Coach buses, Motorhomes	6.7 kg/t	≤ 6.0 kg/t	Y		
<u>Urban</u> Emergency	8.7 kg/t	≤ 8.4 kg/t			
<u>Urban</u> Concrete mixers, Mixed use	7.6 kg/t	≤ 7.1 kg/t			

Rolling Resistance Testing

- SD = +/- 0.3kg/T is the 3 sigma value for the average Crr value reported.
- ISO 28580 with 2.0 m drum report reference
- Self Reporting

Tire Replacement Strategy

- 1. CRR values are Confidential
 - Consult Tire Manufacturers/Websites

- 2. Tire manufacturers have different strategies to reach required Rolling Resistance Targets
 - Tire casing optimization, tread compounds, original tread depths, etc

Fleet Evaluation of Your Facts

- Tire Wear Analysis-
 - □Seasonal Pull Points?
 - □Evaluation of Pull Point
- Tire Selection-
 - □ Drive Tires versus All Position Tires
 - □ Retread versus New Tires
- Downtime Analysis
- Fuel Consumption Analysis

In Summary

- Greenhouse gas Emission Standards extend to MY2027
- OEM Tire manufacturers are prepared to meet the challenges
- Contact your tire supplier for questions and advice.

Vehicle Technical Operations Committee

Pat Meisenholder

Pat.meisenholder@Michelin.com

Matthew Herr, Chair Matt@executivecoach.net

Jeffrey Gilchrist, Vice Chair Jeffrey.gilchrist@volvo.com

